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Travelling waves in confined enclosures, such as porous channels, develop boundary
layers that evolve over varying spatial scales. The present analysis employs a technique
that circumvents guessing of the inner coordinate transformations at the forefront
of a multiple-scales expansion. The work extends a former study in which a two-
dimensional oscillatory solution was derived for the rotational travelling wave in a
porous channel. This asymptotic solution was based on a free coordinate that could
be evaluated using Prandtl’s principle of matching with supplementary expansions. Its
derivation required matching the dominant term in the multiple-scales expansion to an
available Wentzel-Kramers-Brillouin (WKB) solution. Presently, the principle of least
singular behaviour is used. This approach leads to a multiple-scales approximation
that can be obtained independently of supplementary expansions. Furthermore, a
procedure that yields different types of WKB solutions is described and extended
to arbitrary order in the viscous perturbation parameter. Among those, the WKB
expansion of type I is shown to exhibit an alternating singularity at odd orders
in the perturbation parameter. This singularity is identified and suppressed using
matched asymptotic tools. In contrast, the WKB expansion of type II is found to be
uniformly valid at any order. Additionally, matched asymptotic, WKB and multiple-
scales expansions are developed for several test cases. These enable us to characterize
the essential vortico-acoustic features of the axially travelling waves in a porous
channel. All solutions are numerically verified, compared and discussed.

1. Introduction
The modelling of axially travelling oscillatory waves in injection-driven porous

chambers emerges as a necessity in several physical contexts. These include the
analysis of acoustic instability, propellant gasification in solid rocket motors, surface
ablation, filtration, water hammering and biological transport. The types of waves
considered here may be induced externally, through the use of wave generators,
or internally, due to the intrinsic coupling with the chamber’s natural frequencies.
Examples of the forced type are showcased in experimental investigations by Brown
et al. (1986), Dunlap et al. (1990), Ma, Van Moorhem & Shorthill (1991) and Barron,
Majdalani & Van Moorhem (2000). These are chiefly motivated by the need to capture
the wave structure and potential instability during the burning of solid propellant
grains. In this vein, cold-flow facilities are built to permit flow visualization and data
acquisition in a safe environment. This is accomplished by allowing either the injection
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of an inert gas across sintered metal plates or the expulsion of carbon dioxide from
sublimating blocks of dry ice. The ensuing oscillatory motion is controlled through
the use of rotating valves or four-bar linkages attached to a reciprocating piston.
Procedurally, Ma et al. (1991) and Barron et al. (2000) follow Richardson & Tyler
(1929) in adjusting the speed of their electric motors to the extent of controlling the
reciprocating frequency of a piston mounted at the end of a crank.

The investigation of intrinsic self-induced oscillations is separately pursued and
then summarized in two surveys by Ugurtas et al. (2000) and Fabignon et al. (2003).
These discuss an innovative experimental facility known as Veine d’Etude de la Couche
Limite Acoustique (VECLA). Casalis, Avalon & Pineau (1998) describe VECLA as
a long rectangular channel with counterfacing porous and impervious walls. By
injecting air uniformly along the porous side, inevitable fluctuations in the injection
rate give rise to a well-defined acoustic environment that is accompanied by rich
travelling wave structures. These are further discussed in a unifying study by Griffond
(2002).

For a porous channel driven by sidewall mass injection, the travelling wave motion,
excluding hydrodynamic instability waves, is treated by Majdalani (2001). For small-
amplitude pressure oscillations, asymptotic formulations for the flow variables are
obtained using three perturbation schemes. The undisturbed state is represented
by an arbitrary mean-flow satisfying Berman’s classic equation (Berman 1953;
1958), while symmetric time-dependent solutions are derived from the linearized
vorticity and momentum transport equations. In short, a time-dependent laminar-
flow approximation is extracted from the vorticity transport equation, and two other
solutions are retrieved from the momentum equation using zeroth-order WKB and
multiple-scales expansions (Majdalani 2001). Despite their dissimilar expressions, the
three asymptotic solutions are found to agree with one another, with experiments
and with numerical simulations of the nonlinear Navier–Stokes equations. One of
the resulting formulations is later employed by Griffond (2002) in his study of
hydrodynamic instability and wave propagation in an injecting channel.

The aforementioned multiple-scales expansion relies on a space-reductive analysis
founded on an undetermined scaling transformation (UST). This method of analysis
necessitates the introduction of an undetermined scaling variable s that may be
left unspecified during the derivation process. At the conclusion of the asymptotic
analysis, physical arguments are applied towards the determination of s. The idea
is anchored on Prandtl’s principle of matching with supplementary expansions (Van
Dyke 1975, p. 53). Accordingly, the dominant term in the multiple-scales solution
is matched to its counterpart from a WKB expansion. The outcome is helpful in
disclosing the inherently nonlinear scaling structure of the problem. It also produces
a uniformly valid UST solution that outperforms the basic WKB approximation over
a range of physical parameters.

Despite the useful feature of retaining an undetermined scale during the derivation
process, the UST scheme bears practical limitations. Its feasibility is contingent
on the existence of an alternative approximation. To overcome this deficiency, the
present study will extend the UST analysis by presenting a simpler approach which
leads to the independent specification of the scaling transformation. This will be
obtained by imposing the problem’s solvability condition to the extent of suppressing
singularity in successive asymptotic orders. We refer to the resulting expansion as
GST (generalized scaling technique). This approach is also applied by Majdalani
& Rienstra (2002) to problems that involve overlapping dissipative and dispersive
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mechanisms. In comparison to the UST expansion, the paradigm to be implemented
precludes matching and guesswork.

In connection with the WKB expansions of this problem, our study will discuss the
recurrence of an endpoint singularity that only appears at higher orders. To better
understand the spurious nature of this anomaly, a WKB approximation is presented
to an arbitrary order. In the process, two types of physical solutions are realized.
From the expression of type I, a singularity that appears at alternating orders of
the perturbation parameter is identified. This singularity will be shown to affect a
thin region near the core of the porous channel where the WKB approximation
deteriorates. In revisiting this problem, a new solution of type II will be identified
and shown to be unconditionally valid to any order.

The paper is arranged into seven sections. In § 2, the problem is briefly defined
using the momentum transport formulation. This is followed in § 3 by the formal
procedural steps leading to a multi-order WKB expansion. In the course of this effort,
the presence of singularities at alternating orders is identified and discussed. In § 4,
illustrative examples are provided and the existence of an end-zone boundary layer is
ascertained. Section 5 describes the construction of a multiple-scales solution based
on a generalized coordinate. Imposition of the problem’s solvability condition is then
used to deduce the scale. In this manner, a multiple-scales solution is obtained for
an arbitrary mean-flow function. In § 6, the axially travelling wave is completed and
verified numerically. Its main characteristics are explored and discussed. Finally, main
conclusions are reviewed in § 7.

2. Mathematical model
Our main focus is placed on the velocity of a damped travelling wave inside a long

porous channel. Based on two previous studies (Majdalani & Van Moorhem 1998;
Majdalani 2001), the longitudinal component of the wave can be written as

u1(x, y, t) = i sin(ωmx) exp(−iωmt)

− i

∞∑
n=0

(−1)n (ωmx)2n+1

(2n + 1)!
Yn(y) exp (−iωmt) + O(ε),

{
0 � x � l

0 � y � 1
(2.1)

where the eigenfunction Yn must be determined from the doubly perturbed problem
connected with

ε
d2Yn

dy2
− σF (y)

dYn

dy
+
[
i + 2σ (n + 1) F ′(y)

]
Yn = 0, 0 � y � 1, Yn (0) = 1, Y ′

n(1) = 0,

(2.2)
where

ε = νω−1h−2 ∈ [10−8, 10−4] σ ≡ S−1 = vwω−1h−1 ∈ [10−4, 10−1]. (2.3)

For the reader interested in the steps leading to (2.2), a brief overview is provided in
Appendix A. Note that S is the Strouhal number while ε represents the reciprocal of
the kinetic Reynolds number. For consistency, we adopt the same notation as before
(Majdalani 2001). We use t to denote dimensionless time and x and y to represent
the streamwise and transverse coordinates (normalized by the channel’s half-spacing
h). With vw as the injection speed at the wall and ν as the kinematic viscosity, we
denote the speed of sound by as and use asterisks to designate dimensional variables.
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Figure 1. Coordinate system and geometric parameters defining the porous channel with
sidewall injection.

Our normalization is based on

x = x∗/h, y = y∗/h, t = t∗as/h,

ωm = ωh/as = mπh/L, l = L/h, u1 = u∗
1/(ε̄as). (2.4)

In the foregoing expressions, ω is the frequency of oscillations and m ∈ �∗ is
the acoustic oscillation mode number of a pressure wave of amplitude A inside
a channel of length L and mean pressure ps (see figure 1). The dimensionless
wave parameter in (2.4) is given by ε̄ = A/(γps) and the injection Mach number by
Mw = vw/as . With this nomenclature at hand, the instantaneous velocity in the channel
becomes

u(x, y, t) = Mwu0(x, y) + ε̄u1(x, y, t);

{
u0(x, y) = (−xF ′(y), F (y))

u1(x, y, t) = (u1(x, y, t), O(Mw))
. (2.5)

At this juncture, it may be helpful to introduce the injection (or crossflow) Reynolds
number as R ≡ vwh/ν = (εS)−1 > 10. Then, depending on the value of R, two
mean-flow solutions have been made available by Berman (1953) and Yuan (1956).
These correspond to

F (y) =

{
1 − 3

2
y2 + 1

2
y3, 10 < R < 100

cos θ, θ ≡ 1
2
πy, R > 100

, where

{
F ′(0) = F (1) = F ′′(1) = 0

F (0) ≡ F0 = 1
.

(2.6)

At this point, it is expedient to define the small perturbation parameter δ ≡ R−1 = εS.
In lieu of ε, δ < 0.1 is the principal perturbation parameter used in mean-flow
studies of porous channels (Berman 1953, 1958); δ is proportional to the viscosity
independently of the oscillation frequency. This viscous parameter is present implicitly
in (2.2). It can be displayed by multiplying (2.2) with the Strouhal number to obtain

δ
d2Yn

dy2
− F

dYn

dy
+
[
iS + 2 (n + 1) F ′]Yn = 0, 0 � y � 1, Yn(0) = 1, Y ′

n(1) = 0.

(2.7)



Multiple solutions for travelling waves 63

3. WKB analysis
3.1. Exponential corrections

A regular WKB expansion begins with

Yn(y) = exp
(
β−1z0 + z1 + βz2 + β2z3 + β3z4 + · · ·

)
, (3.1)

where zk(y) must be determined sequentially for k � 0. Differentiating twice and
substituting into (2.2) yields

ε
[
β−2z′2

0 + β−1(z′′
0 + 2z′

0z
′
1) + z′′

1 + z′2
1 + 2z′

0z
′
2 + β(z′′

2 + 2z′
0z

′
3 + 2z′

1z
′
2) + · · ·

]
− σF

(
β−1z′

0 + z′
1 + βz′

2 + β2z′
3 + β3z′

4 + · · ·
)

+
[
i + 2 (n + 1) σF ′] = 0. (3.2)

In order to distinguish terms of the same order, it is convenient to multiply through
by βS so one can write

(
iβS − Fz′

0

)
+ β

[
δβ−2z′2

0 + 2 (n + 1) F ′ − Fz′
1

]
+ β2

[
δβ−2(z′′

0 + 2z′
0z

′
1) − Fz′

2

]
+ β3

[
δβ−2(z′′

1 + z′2
1 + 2z′

0z
′
2) − Fz′

3

]
+ O(β4, δβ2) ≡ 0. (3.3)

3.2. Main distinguished limits

Several distinguished limits are possible depending on the relative size of δ and S.
For δ < S−1, quantities between brackets will be balanced when δβ−2 = O(1) and
βS = O(1). These conditions are satisfied when β ∼

√
δ ∼ S−1 or δ ∼ S−2. Since

ξ = δS2 = O(1) is indeed a physical characteristic of the problem, a distinguished
limit can be established by choosing β ≡

√
εS =

√
δ. The balanced series in (3.3)

becomes

(iS
√

δ − Fz′
0) +

√
δ
[
z′2

0 + 2(n + 1)F ′ − Fz′
1

]
+ δ[(z′′

0 + 2z′
0z

′
1) − Fz′

2]

+ δ
√

δ
[(

z′′
1 + z′2

1 + 2z′
0z

′
2

)
− Fz′

3

]
+ O(δ2) ≡ 0. (3.4)

For δ ∼ S−1, it can be seen from (3.2) that the distinguished limit must be β ≡ δ.
Recalling that ε = δ/S, one can multiply (3.2) by Sδ and write

z′2
0 + δ(z′′

0 + 2z′
0z

′
1) + δ2

(
z′′

1 + z′2
1 + 2z′

0z
′
2

)
+ δ3(z′′

2 + 2z′
0z

′
3 + 2z′

1z
′
2)

− F
(
z′

0 + δz′
1 + δ2z′

2 + δ3z′
3

)
+
[
iS + 2 (n + 1) F ′] δ + O(δ4) = 0. (3.5)

A simple rearrangement yields the progressively diminishing series

(
z′2

0−Fz′
0+iSδ

)
+δ
[
(z′′

0 + 2z′
0z

′
1) − Fz′

1 + 2(n + 1)F ′]+δ2
(
z′′

1 +z′2
1+2z′

0z
′
2−Fz′

2

)
+ δ3(z′′

2 + 2z′
0z

′
3 + 2z′

1z
′
2 − Fz′

3) + O(δ4) ≡ 0. (3.6)

3.3. The WKB solution of type I

For β =
√

δ, δ ∼ S−2, terms of like power in δ can be collected. The dominant part
in (3.4), namely, −Fz′

0 + iS
√

δ = 0, z0(0) = 0, can be readily integrated into

z0(y) = iS
√

δ

∫ y

0

F −1(z) dz. (3.7)
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Similarly, the O(1) equation, −Fz′
1 + z′2

0 + 2(1 + n)F ′ = 0, z1(0) = 0, leads to

z1(y) = −ξ

∫ y

0

F −3(z) dz + 2(1 + n) ln (F/F0); ξ = δS2. (3.8)

Next, −Fz′
2 + z′′

0 + 2z′
0z

′
1 = 0 can be integrated with z2(0) = 0. One finds

z2(y) =

∫ y

0

F −1
(
z′′

0 + 2z′
0z

′
1

)
dz = iS

√
δ

{
−2ξ

∫ y

0

F −5(z) dz +
(
2n + 3

2

)[
F −2

0 − F −2(y)
]}

.

(3.9)

By substituting (3.7)–(3.9) back into (3.1) and using W for WKB, one obtains the
complete zeroth-order solution in δ. This is

Y (0)
n (y) = (F/F0)

2n+2 exp
(
ζW
0 − iΦW

0 − iΦW
1n

)
+ O(δ), (3.10)

where

ζW
0 = −ξ

∫ y

0

F −3 dz, ΦW
0 = −S

∫ y

0

F −1 dz,

ΦW
1n = δS

{
2ξ

∫ y

0

F −5(z) dz +
(
2n + 3

2

) [
F −2(y) − F −2

0

]}
. (3.11)

Equation (3.10) defines the basic WKB solution. This expression constitutes an
improvement over the O(δS) solution reported by Majdalani (2001). The inclusion of
ΦW

1n is necessary to complete the leading-order WKB expression.
Higher order solutions may be generated recursively. However, two successive

corrections in zk are needed to advance, at each level, by one order in δ. For example,
z3 and z4 can be evaluated from

z3 =

∫ y

0

F −1
(
z′2

1 + z′′
1 + 2z′

0z
′
2

)
dz = 2 (n + 1)

[
F ′F −2 + (2n + 3)

∫ y

0

F ′2F −3 dz

]

+ 1
4
ξ (12n + 7)

(
F −4 − F −4

0

)
+ 5ξ 2

∫ y

0

F −7 dz, (3.12)

z4 =

∫ y

0

F −1
(
z′′

2 + 2z′
0z

′
3 + 2z′

1z
′
2

)
dz = iS

√
δ

{
(8n+ 7)F ′F −4 + (24n2 + 60n+ 35)

×
∫ y

0

F ′2F −5 dz + 1
3
(20n + 9)ξ

(
F −6 − F −6

0

)
+ 14ξ 2

∫ y

0

F −9 dz

}
. (3.13)

The corresponding corrections (i.e. ζW
1n = δz3 and ΦW

2n = iδ3/2z4) involve higher order
integrals; nonetheless, they may be added to the real and imaginary arguments in
(3.10) to arrive at a solution of O(δ2). Using the solution order as a superscript, it
can be seen from (3.1) that

Y (0)
n = (F/F0)

2n+2 exp
(
ζW
0 − iΦW

0 − iΦW
1n

)
+ O(δ), (3.14)

Y (1)
n = (F/F0)

2n+2 exp
(
ζW
0 + ζW

1n − iΦW
0 − iΦW

1n − iΦW
2n

)
+ O(δ2), (3.15)

so that, for j � 0,

Y (j )
n = (F/F0)

2n+2 exp

(
j∑

k=0

ζW
kn − i

j+1∑
k=0

ΦW
kn

)
+ O(δj+1), (3.16)
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where ζW
kn = δkz2k+1 and ΦW

kn = iδk−1/2z2k . Higher order corrections may be derived
from

z5 =

∫ y

0

F −1
(
z′2

2 + z′′
3 + 2z′

0z
′
4 + 2z′

1z
′
3

)
dz,

z6 =

∫ y

0

F −1
(
z′′

4 + 2z′
0z

′
5 + 2z′

1z
′
4 + 2z′

2z
′
3

)
dz, etc. (3.17)

Based on z0 and z1, recurring trends may be carefully examined to deduce

zk+2 =

∫ y

0

F −1

⎧⎪⎨
⎪⎩ 1

2

[
1 − (−1)k

]
z′2

1
2

(k+1)
+ z′′

k + 2

1
2

k∑
i=0

z′
iz

′
k−i+1

⎫⎪⎬
⎪⎭ dz; k ∈ �. (3.18)

When substituted back into (3.1), (3.18) leads to Y (j )
n = exp[δ− 1

2 z0 + z1+∑2j

k=0 δ
1
2

(k+1)
zk+2] + O(δj+1). Finally, after some effort, we obtain the j th order WKB

solution of type I, specifically

Y (j )
n = (F/F0)

2n+2 exp

[
−ξ

∫ y

0

F −3 dz + iS

∫ y

0

F −1 dz +

2j∑
k=0

δ
1
2

(k+1)
zk+2

]

+ O(δj+1) =

(
F

F0

)2n+2

exp

⎡
⎣∫ y

0

F −1

⎛
⎝− ξF −2 + iS +

2j∑
k=0

δ
1
2

(k+1)

×

⎧⎪⎨
⎪⎩ 1

2
[1 − (−1)k]z′2

1
2

(k+1)
+ z′′

k + 2

1
2

k∑
i=0

z′
iz

′
k−i+1

⎫⎪⎬
⎪⎭
⎞
⎟⎠ dz

⎤
⎥⎦+ O(δj+1). (3.19)

From the WKB solution of type I, it can be shown that for odd values of j , a
singularity arises as y → 1−, ∀n. The non-uniformity near the core can be attributed
to the appearance of a shear layer that arises when small exponential corrections
in even powers of δ are retained. The presence of a boundary layer near the core
is consistent with the classic theory of laminar, injection-driven flows (Terrill 1965,
1973).

3.4. The WKB solution of type II

For β = δ, δ ∼ S−1, terms of integral powers in δ may be segregated. The eikonal
equation in (3.6), namely, z′2

0 − Fz′
0 + iSδ = 0, z0(0) = 0, yields two possible solutions.

These correspond to

z0(y) = 1
2

∫ y

0

[F (z) ∓
√

F 2(z) − 4iSδ] dz. (3.20)

In turn, the transport equation, (z′′
0 + 2z′

0z
′
1) − Fz′

1 + 2(n + 1)F ′ = 0, z1(0) = 0, can

be managed in closed form. Integration requires the use of
∫

(F ′/
√

F 2 − 4iSδ) dz =
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ln [F (z) +
√

F 2(z) − 4iSδ] + c and leads to the dual solutions:

z1(y) =

∫ y

0

z′′
0 + 2(n + 1)F ′

F − 2z′
0

dz = ln

⎧⎨
⎩
[

F 2
0 − 4iSδ

F 2(y) − 4iSδ

] 1
4

×
[

F (y) +
√

F 2(y) − 4iSδ

F0 +
√

F 2
0 − 4iSδ

]±
(

2n+
5
2

)⎫⎪⎬
⎪⎭ . (3.21)

Using Kn to denote the WKB solution of type II, the linearity of (2.2) enables us to
put, at O(δ),

Kn = C1

[
F 2

0 − 4iSδ

F 2(y) − 4iSδ

] 1
4

[
F (y) +

√
F 2(y) − 4iSδ

F0 +
√

F 2
0 − 4iSδ

]2n+
5
2

exp

{
1
2
δ−1

∫ y

0

[F (z)

−
√

F 2(z) − 4iSδ] dz
}

+ C2

[
F 2

0 − 4iSδ

F 2(y) − 4iSδ

] 1
4

[
F (y) +

√
F 2(y) − 4iSδ

F0 +
√

F 2
0 − 4iSδ

]−2n− 5
2

× exp

{
1
2
δ−1

∫ y

0

[F (z) +
√

F 2(z) − 4iSδ] dz

}
. (3.22)

At this juncture, the two constants C1 = 1 and C2 = 0 are determined such that the
two boundary conditions, Kn(0) = 1 and K ′

n(1) = 0 are secured. The result is

Y K
n ≡ K (0)

n =

[
F 2

0 − 4iSδ

F 2(y) − 4iSδ

] 1
4

[
F (y) +

√
F 2(y) − 4iSδ

F0 +
√

F 2
0 − 4iSδ

]2n+
5
2

× exp

{
1
2
δ−1

∫ y

0

[F (z) −
√

F 2(z) − 4iSδ] dz

}
. (3.23)

Recalling from (2.6) that F0 = 1 and F (1) = 0, (3.23) may be evaluated at the core.
One finds

Y K
n (1) = δn+1

(√
1 − 4iSδ

) 1
2
(1 +

√
1 − 4iSδ)−2n− 5

2 (−4iS)n+1

× exp

{
1
2
δ−1

∫ 1

0

(F −
√

F 2 − 4iSδ)dz

}
∼ O(δn+1). (3.24)

Further corrections can be systematically unravelled. From z′′
1 + z′2

1 +2z′
0z

′
2 − Fz′

2 = 0,
one gets

z2 =

∫ y

0

(
z′′

1 + z2
1

)
/(F − 2z′

0) dz. (3.25)

Similarly, the O(δ3) equation z′′
2 + 2z′

0z
′
3 + 2z′

1z
′
2 − Fz′

3 = 0 gives z3 =∫ y

0
[(z′′

2 + 2z′
1z

′
2)/(F − 2z′

0)] dz. A recurrence formula is identified for k � 0 such
that

zk+3 =

∫ y

0

[(
z′′

k+2 + 2z′
1z

′
k+2 +

k∑
i=1

z′
i+1z

′
k+2−i

)/
(F − 2z′

0)

]
dz. (3.26)
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This expression enables us to write, for j � 2,

K (j )
n = exp

(
δ−1z0 + z1 + δz2 +

j−2∑
k=0

δk+2zk+3

)
+ O(δj+1)

= K (0)
n exp

∫ y

0

{
(F − 2z′

0)
−1

[
δ
(
z′′

1 + z2
1

)
+

j−2∑
k=0

δk+2

(
z′′

k+2 + 2z′
1z

′
k+2

+

k∑
i=1

z′
i+1z

′
k+2−i

)]
dz

}
+ O(δj+1). (3.27)

3.5. Other possible limits

For β = δ1/3, δ ∼ S−3, a type III expansion may also be conceived. As usual, terms
of equal powers in δ may be combined and the leading-order terms that emerge in
(3.3), namely, z′

0 − iSδ1/3F −1 = 0 with z0(0) = 0, can be integrated. One gets

z0(y) = iSδ1/3

∫ y

0

F −1(z) dz. (3.28)

In like fashion, one extracts, z′
1 = 2 (n + 1) F −1F ′, z′

2 = F −1z′2
0, z1(0) = z2(0) = 0 and

so on. These first-order ordinary differential equations (ODEs) yield

z1(y) = 2 (n + 1) ln (F/F0); z2(y) = −S2δ2/3

∫ y

0

F −3(z) dz, (3.29)

z3 =

∫ y

0

F −1(2z′
0z

′
1 + z′′

0) dz = iSδ1/3
(
2n + 3

2

) (
F −2

0 − F −2
)
. (3.30)

Starting at z3, the type III formulation is seen reproduce the type I solution obtained
at a previous order. As before, a recursive formula may be identified for k � 0,
specifically

zk+3 =

∫ y

0

F −1

⎧⎪⎨
⎪⎩ 1

2
[1 − (−1)k]z′2

1
2

(k+1)
+ z′′

k + 2

1
2

k∑
i=0

z′
iz

′
k−i+1

⎫⎪⎬
⎪⎭ dz; k ∈ �. (3.31)

Thus, for j � 2, one is left with

B (j )
n = (F/F0)

2n+2 exp

(
iS

∫ y

0

F −1(z) dz − ξ

∫ y

0

F −3(z) dz +

j−2∑
k=0

δ
1
3

(k+2)
zk+3

)
+ O(δj+1)

=

(
F

F0

)2n+2

exp

⎡
⎣∫ y

0

F −1

⎛
⎝− ξF −2+iS +

j−2∑
k=0

δ
1
3

(k+2)

×

⎧⎪⎨
⎪⎩ 1

2
[1 − (−1)k]z′2

1
2

(k+1)
+ z′′

k + 2

1
2

k∑
i=0

z′
iz

′
k−i+1

⎫⎪⎬
⎪⎭
⎞
⎟⎠ dz

⎤
⎥⎦+ O(δj+1), (3.32)

where B (j )
n refers to the WKB approximation of type III. Interestingly, it may be

shown that B (j )
n reproduces Y (j )

n when truncated at the same order in δ. This trend
extends to other types of expansions that may be obtained using distinguished limits
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corresponding to δ ∼ S−4, S−5, S−6, etc. These appear to represent slower converging
series of type I that share similar physical attributes. For this reason, only the type I
expansion will be considered in the remainder of this study.

3.6. The total velocity field

To express the time-dependent axial velocity, one substitutes the eigenfunctions into
(2.1). Based on the WKB solution of type I, one obtains

uW
1 (x, y, t) = i sin(ωmx) exp(−iωmt)

− i(F/F0) sin(ωmxF/F0) exp
[
ζW − i

(
ωmt + ΦW

)]
+ O(δ). (3.33)

The real part may be readily retrieved and written as

uW
1 (x, y, t) = sin (ωmx) sin (ωmt)−(F/F0) sin (ωmxF/F0) exp ζW sin

(
ωmt + ΦW

)
+O(δ).

(3.34)
As for the arguments in (3.34), they can be determined from the known
functions

ζW = −δS2

∫ y

0

F −3(z) dz, ΦW

= −S

∫ y

0

F −1(z) dz − δS

[
3
2

(
F −2

0 − F −2
)

− 2δS2

∫ y

0

F −5(z) dz

]
. (3.35)

Attempts to express (3.34) at orders higher than δ ∼ S−2 are needless because
u1 is derived from the momentum equation at the order of S−2. This constitutes
another justification for dismissing asymptotic expansions that occur at δ ∼ S−k;
k � 3.

Based on the WKB solution of type II, one can start with

uK
1 (x, y, t) = i sin(ωmx) exp(−iωmt) − i

∞∑
n=0

(−1)n (ωmx)2n+1

(2n + 1)!
Kn(y) exp (−iωmt) + O(δ)

(3.36)
and then insert (3.23). One finds

uK
1 (x, y, t) = i sin(ωmx) exp(−iωmt) − i

× exp (−iωmt) exp

{
1
2
δ−1

∫ y

0

[F (z) −
√

F 2(z) − 4iSδ] dz

}

×
(

F 2
0 − 4iSδ

F 2 − 4iSδ

) 1
4

(
F +

√
F 2 − 4iSδ

F0 +
√

F 2
0 − 4iSδ

) 3
2

×
∞∑

n=0

(−1)n (ωmx)2n+1

(2n + 1)!

(
F +

√
F 2 − 4iSδ

F0 +
√

F 2
0 − 4iSδ

)2n+1

+ O(δ). (3.37)

At this juncture, the MacLaurin series expansion of the sine function can be identified
in (3.37). This enables us to simplify (3.37) into

uK
1 (x, y, t) = i sin(ωmx) exp(−iωmt) − i exp(−iωmt)

× exp

{
1
2
δ−1

∫ y

0

[
F (z) −

√
F 2(z) − 4iSδ

]
dz

}
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×
(

F 2
0 − 4iSδ

F 2 − 4iSδ

) 1
4

(
F +

√
F 2 − 4iSδ

F0 +
√

F 2
0 − 4iSδ

) 3
2

× sin[ωmx(F +
√

F 2 − 4iSδ)/(F0 +

√
F 2

0 − 4iSδ)] + O(δ). (3.38)

A closed form type II solution depends on the tacit integration of the exponential
argument in (3.38). Despite its accuracy and well-behaved character, the radical in
the integrand of uK

1 makes it less susceptible to integration. Hence, in cases for which
numerical evaluation is unavoidable, the type I uW

1 becomes more practical.

4. Illustrative examples
Two applications to porous channels may be considered for which F = 1− 3

2
y2+ 1

2
y3

when 10 < R < 100 and F = cos( 1
2
πy) when R → ∞. Moreover, the test case for

F = α (1 − y) will be investigated as it represents a generic function that can effectively
mimic the asymptotic behaviour of the solution near the core.

4.1. Asymptotic solutions for small and large R

For small and large R, the type I solution Y (0)
n may be determined directly from

∫ y

0

F −1(z) dz =

{
1
3
ln
[(

1 + y − 1
2
y2
)
(1 − y)2

]
, small R

2
π
ln tan

[
π
4
(1 + y)

]
, large R

, (4.1)

∫ y

0

F −3(z) dz =

{
4
27

ln 3−r2

2r2 + 4r4−18r2+12
9r2(3−r2)2

+ 1
18

, small R

1
π

[
ln tan 1

4
π (1 + y) + sec

(
1
2
πy
)
tan
(

1
2
πy
)]

, large R
, (4.2)

where r ≡ 1 − y and∫ y

0

F −5(z) dz

=

⎧⎪⎨
⎪⎩

4
729

{
147
16

+ 20 ln(− 1
2

+ 3
2
r−2) + 3[2 + y2(y − 3)]−4 [−49 + y(y − 2) (−326

+ 5y(y − 2) {31 + 2y(y − 2) [−2 + y(y − 2)] [−7 + 2y(y − 2)]}
)]}

, small R

1
16π

{
12 ln tan

(
1
4
π + 1

2
θ
)

+ sec4 θ [3 sin (3θ ) + 11 sin θ ]
}
, large R

.

(4.3)

Note that for both small and large R, (3.10) gives Y
(0)
0 (1) = 0 at the core. For the type

II solution, the leading-order expansion (3.23) may be evaluated for large R to arrive
at

K (0)
n =

(
1 − 4iSδ

cos2 θ − 4iSδ

) 1
4

(
cos θ +

√
cos2 θ − 4iSδ

1 +
√

1 − 4iSδ

)2n +
5
2

× exp
(

1
πδ

{sin θ −
√

1 − 4iSδE[θ |(1 − 4iSδ)−1]}
)
, (4.4)

where E(θ |x) =
∫ θ

0

√
1 − x sin2 z dz is the elliptic integral of the second kind.

At the core, one regains the complete elliptic integral E(x) ≡ E( 1
2
π|x) =
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WKB type I WKB type II
Numerical

y Y
(0)
0 Y

(1)
0 Y

(2)
0 K

(0)
0 K

(1)
0 K

(2)
0 Y N

0

0.00 1 1 1 1 1 1 1
0.05 0.8676644 0.8674551 0.8674590 0.8676685 0.8674590 0.8674590 0.8674590
0.10 0.5188763 0.5186301 0.5186429 0.5188833 0.5186428 0.5186429 0.5186429
0.20 −0.3939219 −0.3935576 −0.3935347 −0.3939428 −0.3935340 −0.3935347 −0.3935347
0.30 −0.7672007 −0.7662141 −0.7662170 −0.7672949 −0.7662147 −0.7662170 −0.7662171
0.40 −0.2589166 −0.2585327 −0.2585659 −0.2589812 −0.2585645 −0.2585659 −0.2585659
0.50 0.3586916 0.3582113 0.3582018 0.3589124 0.3581976 0.3582018 0.3582018
0.60 0.2062112 0.2061807 0.2061778 0.2064960 0.2061744 0.2061778 0.2061778
0.70 −0.1574955 −0.1582490 −0.1582805 −0.1582560 −0.1582757 −0.1582805 −0.1582805
0.80 0.0345428 0.0357267 0.0360158 0.0356684 0.0360156 0.0360158 0.0360158
0.90 −0.0049035 −0.0104253 −0.0091613 −0.0088040 −0.0091688 −0.0091612 −0.0091613
0.95 −0.0000306 34513650. 0.0008021 0.0006995 0.0008034 0.0008017 0.0008015
1.00 0 ∞ 0 −0.0000111 −0.0000168 −0.0000170 −0.0000339

Table 1. Comparison between numerical and asymptotic solutions using the two WKB

approximations, Y
(j )
n and K

(j )
n , given at O(δj+1). Here S = 10, R = 103, n = 0 and

F = cos( 1
2

πy).

π
(

1
2

− 1
8
x − 3

128
x2 − 5

512
x3 − 175

32768
x4 + · · ·

)
. Consequently, one may express

K (0)
n (1) = δn+1(−4iS)n +1(

√
1 − 4iSδ)

1
2 (1 +

√
1 − 4iSδ)−2n − 5

2

× exp
(

1
πδ

{1 −
√

1 − 4iSδE[(1 − 4iSδ)−1]}
)
. (4.5)

Higher order approximations may be sequentially generated. For small R, however,
only a quasi-analytical solution is possible due to the inability to integrate the eikonal
equation except by computer. This issue is not present in the WKB solution of
type I.

For large R, a comparison between numerics and asymptotics is provided in table 1.
As usual, the agreement between asymptotics and numerics improves at higher orders.
For the type II approximations (second set of columns), it is clear that K (j )

n remains

uniformly valid ∀j . Furthermore, K (j )
n is seen to predict the O(δn+1) value obtained

numerically at y = 1. This result is consistent with (4.5). In contrast, the type I solution
is shown to exhibit a region of non-uniformity in the vicinity of y = 1. Whereas both
Y (0)

n and Y (2)
n vanish at the endpoint, Y (1)

n becomes suddenly unbounded as y → 1−.
This behaviour signals the presence of a boundary layer that is not accounted for in
the WKB representation of type I. A solution that incorporates small changes inside
this layer is therefore necessary.

4.2. Exact and asymptotic solutions near the core

Consider F = αr where α = (3
2
, 1

2
π) can mimic the small or large injection flow

behaviour near the core. As shown in Appendix B, (2.7) can be solved exactly and
put in the form

Y E
n = exp

[
1
2
αδ−1

(
1 − r2

)] Φ
(
n + 3

2
− 1

2
iα−1S, 1

2
, 1

2
αδ−1r2

)
Φ
(
n + 3

2
− 1

2
iα−1S, 1

2
, 1

2
αδ−1

) . (4.6)
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Using the WKB expansion of type I, one can obtain an approximation to any desired
order such as

Y (0)
n = r2n+2−iS/α exp

{
− 1

2
α−3δS2(r−2 − 1)

− 1
2
iα−2δS(r−2 − 1)

[
3 + 4n + δS2α−3(r−2 + 1)

]}
+ O(δ), (4.7)

Y (1)
n = Y (0)

n exp
(
α−1δ(1 + n)(1 + 2n)(r−2 − 1)

+1
4
α−4δ2S(r−4 − 1){(7 + 12n)S + iα[7 + 4n(7 + 6n)]}

+1
3
α−7δ3S3(r−6 − 1)

[
5
2
S + iα(9 + 20n)

]
+ 7

4
iα−9δ4S5(r−8 − 1)

)
+ O(δ2),

(4.8)

Y (2)
n = Y (1)

n exp
(
− 1

2
α−2δ2S4(1 + n)(1 + 2n)(1 + 4n)(r−4 − 1) − 1

3
α−5δ3S(r−6 − 1)

×
{
2[5 + 3n(9 + 10n)]S + 1

2
iα(1 + 4n)(9 + 44n + 40n2)

}
− 1

8
α−8δ4S3(r−8 − 1)

× {(47 + 140n)S + 2iα[25 + 4n(47 + 70n)]} − 1
5
α−11δ5S5(r−10 − 1)

× [21S + iα(59 + 252n)] − 11 iα−13δ6S7(r−12 − 1)
)

+ O(δ3). (4.9)

The WKB approximation of type II can also be evaluated for the problem at hand.
One obtains the leading-order solution from (3.23). At O(δ), one finds

K (0)
n =

(
α2 − 4iSδ

α2r2 − 4iSδ

) 1
4

(
αr +

√
α2r2 − 4iSδ

α +
√

α2 − 4iSδ

)2n+
5
2

−iα−1S

× exp

{
α

4δ

[
1 − r2 + r

√
r2 − 4i

Sδ

α2
−
√

1 − 4i
Sδ

α2

]}
. (4.10)

In like fashion, one arrives at

K (1)
n

K
(0)
n

= exp

{
−( 5

2
+ 2n)α3(1 − r2)

(α2 − 4iSδ)(α2r2 − 4iSδ)
+ 1

24
α2(138 + 240n + 96n2)

×
[
(α2 − 4iSδ)− 3

2 − r(α2r2 − 4iSδ)− 3
2

]
+ 1

24
iα4S−1δ−1(37 + 60n + 24n2)

×
[
(α2 − 4iSδ)− 3

2 − r3(α2r2 − 4iSδ)− 3
2

]}
+ O(δ2). (4.11)

Higher order terms are preferably derived from (3.27) using symbolic programming.

4.3. Comparing exact and asymptotic solutions

The two WKB formulations of increasing orders are compared to the exact solution
in table 2 for a typical set of physical parameters. The agreement between exact
and asymptotics, often manifested in several decimal places, helps to confirm the
accuracy of the foregoing analysis. As alluded to earlier, it can be seen that the WKB
solution of type I yields, in an alternating fashion, either zero or infinity at the core.
Being inconsistent with the finite value of Y E

n , this behaviour suggests investigating an
inner solution to supplement Y (j )

n near the core. To gain a clearer picture, differences
between exact and asymptotic predictions are plotted in figure 2 for F = 1

2
π(1 − y)

at n = 0 and n = 10. In figure 2(a), it can be seen that the errors associated
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WKB type I WKB type II
Exact

y Y
(0)
0 Y

(1)
0 Y

(2)
0 K

(0)
0 K

(1)
0 K

(2)
0 Y E

0

0.00 1 1 1 1 1 1 1
0.05 −0.0556490 −0.0556491 −0.0556491 −0.0556490 −0.0556491 −0.0556491 −0.0556491
0.10 −0.7894993 −0.7895045 −0.7895045 −0.7894998 −0.7895045 −0.7895045 −0.7895045
0.20 0.4339311 0.4339380 0.4339380 0.4339318 0.4339380 0.4339380 0.4339380
0.30 0.1687017 0.1687069 0.1687069 0.1687024 0.1687069 0.1687069 0.1687069
0.40 −0.2999705 −0.2999864 −0.2999864 −0.2999728 −0.2999864 −0.2999864 −0.2999864
0.50 −0.2399436 −0.2399662 −0.2399662 −0.2399479 −0.2399662 −0.2399662 −0.2399662
0.60 −0.0946533 −0.0946702 −0.0946702 −0.0946577 −0.0946702 −0.0946702 −0.0946702
0.70 0.0647037 0.0647305 0.0647305 0.0647140 0.0647305 0.0647305 0.0647305
0.80 0.0175739 0.0175998 0.0175997 0.0175895 0.0175998 0.0175997 0.0175997
0.90 −0.0019185 −0.0019641 −0.0019629 −0.0019589 −0.0019630 −0.0019630 −0.0019630
0.95 0.0000072 0.0000413 0.0000180 0.0000259 0.0000307 0.0000307 0.0000261
1.00 0 ∞ 0 −3.10 × 10−15 −7.35 × 10−15 −7.36 × 10−15 −6.62 × 10−15

Table 2. Comparison between exact and asymptotic solutions using the two WKB approximations. Here S = 50, R = 25 × 103, n = 0
and F = 1

2
π(1 − y).
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Figure 2. Error between exact and asymptotic entries given in table 2 for (a) n = 0, and (b)
n = 10. Despite its consistent precision in the outer region, Y (1) becomes singular as y → 1−.

with Y (j )
n and K (j )

n conform to their reported truncation orders, with K (j )
n being

somewhat more accurate. Figure 2(b), on the other hand, shows that the error in each
approximation diminishes as n is increased. It also illustrates the improved agreement
between Y (j )

n and K (j )
n at higher values of n. An exception arises in Y (1)

n (odd) which
is seen to diverge as y → 1−. The corresponding region of breakdown is visible in the
range 0.96 � y � 1. The core singularity that arises in the WKB solution of type I
is difficult to detect because Y (1)

n remains well-behaved and of O(δ2) outside the thin
region of non-uniformity. This singularity does not affect K (j )

n , ∀j .

4.4. Endpoint singularity at even orders of δ ∼ S−2

It should be noted that as y → 1−, the WKB solution of type I becomes suddenly
unbounded at even orders of δ. This can be explained by considering, for example,
the real part of the exponential argument in Y (1)

n . This argument controls the wave

amplitude and is dominated at the core by 5
6
α−7δ3S4r−6−→

r→0+ ∞ for fixed S, δ and

n. Since the wave amplitude is dictated by r2n +2 exp( 5
6
α−7δ3S4r−6) as r → 0+, the

exponential singularity cannot be suppressed by the vanishing polynomial. This
unbounded character alternates between successive orders in Y (j )

n . In fact, as r → 0+,
the amplitude of the WKB solution of type I can be seen to be

Y (0)
n ∼ r2n+2 exp

(
− 1

2
α−3δS2r−2

)
, Y (2)

n ∼ r2n+2 exp
(
− 21

5
α−11δ5S6r−10

)
, etc. (4.12)

At order j , one finds the key expression

Y (j )
n ∼ r2n+2 exp

[
(−1)j+1a2j+1

(4j + 2)α

δ2j+1S2j+2

(αr)4j+2

]
; r → 0+, (4.13)

where a0 = a1 = 1, a2 = 2, a3 = 5, a4 = 14, a5 = 42, etc. These positive constants
form a progressive sequence that can be recovered from

a0 = 1, a2j+1 = 2

j−1∑
k=0

aka2j−k + a2
j , j � 0; a2j = 2

j−1∑
k=0

aka2j−k−1, j � 1. (4.14)

Equation (4.13) exposes an intrinsic singularity at even orders of δ as r → 0+. For
both small and large R, the same type of singularity is detected in the WKB solution
of type I. This is caused by the sign alternation of the most singular term following
each successive correction to the exponential expansion. Since Y (2k+1)

n (0) becomes
unbounded for k = 0, 1, 2, . . . , the use of Y (1)

n , Y (3)
n , etc., leads to an incomplete
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representation. Such a representation lacks exponentially small quantities that arise
at even powers of δ. Conversely, since Y (2k)

n satisfies both boundary conditions, it
represents an adequate approximation of the exact solution. However, given that
Y (2k)

n (0) = 0, a problem arises at higher orders because the exact solution does not
completely vanish at r = 0. To see this, one must evaluate (4.6) viz.

Y E
n (0) = exp

(
1
2
αδ−1

)
/Φ
(
n + 3

2
− 1

2
iα−1S, 1

2
, 1

2
αδ−1

)
. (4.15)

Then, using the large x identity (Abramowitz & Stegun 1964, p. 504),

Φ(a, b, x) =
Γ (b)

Γ (a)
exxa−b

[
1 + O(x−1)

]
, (4.16)

one can expand the Kummer function in (4.15) and write

Y E
n (0) = π− 1

2 (2/α)1 + n − 1
2

iα−1S
Γ
(
n + 3

2
− 1

2
iα−1S

)
δ1+n− 1

2
iα−1S [1 + O(δ)] . (4.17)

Thus, the wave amplitude at the core is seen to be

Y E
n (0) = O(δ1+n). (4.18)

The same can be extrapolated from the WKB solution of type II. In fact, (4.10) gives

K (0)
n (0) = δ1+n− 1

2
iα−1S

(
δ + 1

4
iα2S−1

) 1
4

⎡
⎣ 2(−1)

3
4 α−1S

1
2

1 +
√

1 − 4iSδα−2

⎤
⎦

2n+
5
2

−iα−1S

× exp
[

1
4
δ−1α(1 −

√
1 − 4iSδα−2)

]
= O(δ1+n). (4.19)

Since the discrepancy between Y E
n (0) and Y (0)

n (0) is of order δ1+n � δ, ∀n � 0, it is
generally smaller than the truncation error in the leading-order approximation. It can
be safely absorbed by the truncation error. We conclude that Y (0)

n is uniformly valid,

∀n � 0. This behaviour is illustrated in figure 3 where both Y
(0)
0 and K

(0)
0 are shown to

provide suitable approximations uniformly across the domain. Figure 3 also illustrates
the importance of the (viscous) parameter ξ = δS2. By fixing ξ , a constant depth
of penetration is realized irrespective of the operating parameters. This convincing
observation is consistent with the findings of Majdalani (2001). Since the remaining
oscillations in the inner region are of O(δ), their contribution is negligible at leading
order. Nonetheless, the discrepancy at the core can become larger than the truncation
error in higher order representations. For example, at O(δ3), Y (2)

n can become non-
uniformly valid for n = 0, 1. In general, the discrepancy at the core cannot be ignored
in the assessment of Y (2k)

n for n = 0, 1, . . . , 2k − 1; k � 1. Under these auspices,
one must insist on an inner correction for Y (2k)

n . The removal of the small endpoint
discrepancy can be especially useful in applications that demand high precision in
the core region. In the oscillatory channel flow problem, the physically meaningful
mechanisms occur near the wall where vorticity is generated. Near the core, the
rotational coupling with the solid boundary is inconsequential. Although a small
exponential correction can be found in the core region, its inclusion is unwarranted
at leading order. Beyond the leading order, the type I expansion cannot be continued
without displaying a core singularity. When this occurs, an inner correction becomes
a necessity.
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Figure 3. WKB approximations showing consistent agreement by overlapping the exact
solution for F = 1

2
π(1 − y), ξ = 10, and a Strouhal number of (a) S = 200 and (b) S = 100.

By fixing ξ ≡ δS2, the penetration depth remains constant irrespective of the frequency of
oscillations.

4.5. The near-core solution

The inner equation that dominates near the core can be realized following the linear
transformation χ = r

√
α/δ. One finds

d2Y i
n

dχ2
+ χ

dY i
n

dχ
+
[
iα−1S − (2n + 2)

]
Y i

n = 0, (4.20)

where Y i
n constitutes an inner representation of the solution for r ∈ [0,

√
2δ/α].

Equation (4.20) can be readily solved using the boundary condition at the core,
dY i

n(0)/dχ = 0; one obtains

Y i
n(χ) = C0 e− 1

2
χ2

Φ
(

3
2

+ n − 1
2
iα−1S, 1

2
, 1

2
χ2
)
. (4.21)

According to Prandtl’s matching principle, the remaining constant may be evaluated
by reconciliation with the inner limit of Y (j )

n . First, however, the outer expansion of
Y i

n must be made available. This can be realized by writing, for large χ ,

(Y i
n)

o = C0

Γ
(

1
2

)
Γ
(

3
2

+ n − 1
2
iα−1S

) (r/√2δ/α)2+2n−iS/α. (4.22)

At this point, (4.22) can be matched with the inner limit of the outer solution,
Y o

n = r2n+2−iS/α . The result is

C0 = π− 1
2 Γ ( 3

2
+ n − 1

2
iα−1S) (2δ/α)1+n− 1

2
iS/α

. (4.23)

Substituting back into (4.21) and reverting to the unstretched variable, one finds

Y i
n(r) = π− 1

2 Γ
(

3
2

+ n − 1
2
iα−1S

)
(2δα−1)1+n− 1

2
iS/α

× exp(− 1
2
αδ−1r2)Φ

(
3
2

+ n − 1
2
iα−1S, 1

2
, 1

2
αδ−1r2

)
. (4.24)

A composite solution can thus be formed by adding to Y (j )
n the inner solution minus
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the common limit. This combination yields

Y c
n = Y i

n+Y (j )
n −(Y i

n)
o ≡ Y (j )

n +Ȳ (j )
n = Y (j )

n +π− 1
2 Γ
(

3
2
+n− 1

2
iα−1S

)
(2δα−1)1+n− 1

2
iS/α

× exp(− 1
2
αδ−1r2)Φ

(
3
2

+ n − 1
2
iα−1S, 1

2
, 1

2
αδ−1r2

)
− r2n+2−iS/α, (4.25)

where the net inner correction Ȳ (j )
n is seen to be very small, being of O(δ1+n). It

may be shown that (4.25) mimics the exact solution in the neighbourhood of r = 0.
However, Ȳ (j )

n is more elaborate due to the presence of special functions; it also reduces
the accuracy of the solution in the outer domain, especially near the wall. Because
C0 is found by matching, it leads to an approximation that becomes increasingly
more accurate asymptotically in δ. For this reason, Y c

n becomes less precise than
Y (j )

n in the outer region. Nonetheless, as δ → 0, Y c
n will stand to outperform Y (j )

n

in its ability to match both boundary conditions while yielding a value of O(δ1+n)
at the core. In practice, since Ȳ (j )

n = O(δ1+n), one can express the basic solution as
Y W

n = Y (0)
n + O(δ), Ȳ (j )

n notwithstanding.

4.6. The endpoint corrections for small and large R

The example we have cited serves a dual purpose. First, it illustrates the relationship
between exact and asymptotic forms of the solution for a test function F = αr . More
importantly, perhaps, it provides the general form of the inner solution for Berman’s
small and large mean-flow functions. This is due to the suitability of F = αr ,
α = (3

2
, 1

2
π) in representing the inner expansions for F = [1

2
r(3 − r2), sin( 1

2
πr)]. For

example, in order to find Ȳ (j )
n for the large injection case, one must first realize that

the outer solution is given by

Y o
n = lim

δ→0
Y (j )

n = (cos θ )2n+2 exp
[

2
π
iS ln tan

(
1
4
π + 1

2
θ
)]

=
[
sin
(

1
2
πr
)]2n+2

× exp
[
− 2

π
iS ln tan

(
1
4
πr
)]

, (4.26)

with the inner limit

(Y o
n )i = lim

r→0

[
sin
(

1
2
πr
)]2n+2

exp
[
− 2

π
iS ln tan

(
1
4
πr
)]

= 2
2
π

iS
(

1
2
πr
)2n+2− 2

π
iS

. (4.27)

Insofar as sin( 1
2
πr) ∼ 1

2
πr in the near-core region, the general form of the inner

solution becomes identical to (4.21) with α = 1
2
π. The outer limit of Y i

n also coincides
with (4.22). The only difference here is that C0 must be found by matching (4.27) with
(4.22). Thus, by setting (Y i

n)
o = (Y o

n )i , one finds

C0 = 2
2
π

iSπ
1
2

+n− 1
π

iS
Γ ( 3

2
+ n − 1

π
iS)δ1+n− 1

π
iS
. (4.28)

The composite solution can be constructed from (4.25) and (3.16). One finally obtains

Y c
n = Y i

n − (Y i
n)

o + Y (j )
n = 2

2
π

iSπ
1
2

+n− 1
π

iS
Γ
(

3
2

+ n − 1
π
iS
)
δ1+n− 1

π
iS

× exp
(
− 1

4
πδ−1r2

)
Φ
(

3
2

+ n − 1
π
iS, 1

2
, 1

4
πδ−1r2

)
− 2

2
π

iS
(

1
2
πr
)2n+2− 2

π
iS

+ (cos θ )2n+2

× exp
(
− 1

π
δS2
[
ln tan

(
1
4
π + 1

2
θ
)

+ sec θ tan θ
]
+ 2

π
iS ln tan

(
1
4
π + 1

2
θ
)

−iδS
{

1
8π

δS
[
12 ln tan

(
1
4
π + 1

2
θ
)

+ sec4 θ(11 sin θ + 3 sin 3θ )
]

+
(
2n + 3

2

)
(sec2 θ − 1)

})
, j = 0. (4.29)

The small correction gained by retaining the inner solution is illustrated in table 3
using two test functions. The composite solution has the advantage of better
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2
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2
πy)

y Y E
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(2)
0 Y c

0 Y N
0 Y

(2)
0 Y i

0 (Y i
0 )

o Y c
0

0.00 1 1 0.9999678 1 1 0.4046515 0.4046571 0.9999944
0.05 −0.0558466 −0.0558466 −0.0558415 −0.7977303 −0.7977303 −2.2149878 −2.2150676 −0.7976505
0.10 −0.7918366 −0.7918366 −0.7918057 0.2960063 0.2960063 0.0946690 0.0946803 0.2959950
0.20 0.4367574 0.4367574 0.4367376 −0.6655363 −0.6655363 −0.9618275 −0.9618818 −0.6654820
0.30 0.1715711 0.1715711 0.1715570 −0.7881319 −0.7881319 1.1865032 1.1865797 −0.7882084
0.40 −0.3064925 −0.3064925 −0.3064666 −0.5652062 −0.5652062 0.3355138 0.3355507 −0.5652431
0.50 −0.2493209 −0.2493209 −0.2492890 −0.4879304 −0.4879304 −0.0568756 −0.0568754 −0.4879305
0.60 −0.1004289 −0.1004289 −0.1004110 −0.1167005 −0.1167005 0.2624337 0.2624921 −0.1167589
0.70 0.0729891 0.0729891 0.0729648 0.0281442 0.0281442 −0.0985015 −0.0985435 0.0281861
0.80 0.0227773 0.0227773 0.0227615 −0.0487533 −0.0487533 −0.0707224 −0.0707845 −0.0486912
0.90 −0.0050751 −0.0050751 −0.0050613 0.0176026 0.0176026 0.0188282 0.0188938 0.0175370
0.95 0.0011016 0.0011016 0.0010901 −0.0048594 −0.0048594 −0.0049298 −0.0049981 −0.0047911
1.00 −3.98 × 10−17 0 −3.98 × 10−17 −1.993 × 10−17 0 −1.994 × 10−17 0 −1.994 × 10−17

Table 3. Type I WKB approximation with and without the inner correction Y i
0 . Here S = 50, R = 107 and n = 0. Note that the composite

solution Y c
0 matches YE

0 and YN
0 at both ends of the interval.
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approximating the exact solution near the core. Unlike Y
(2)
0 , Y c

0 approaches Y E
0 and

Y N
0 at both ends of the interval. However, inasmuch as the matching and subsequent

determination of C0 is based on R → ∞, Y c
0 remains less accurate than Y

(2)
0 in the

outer domain when R is finite. This is evident at y = 0 where Y c
0 → 1 asymptotically

in δ. Thus, as δ → 0, the precision of the composite solution is improved.

5. Multiple scales
5.1. Strategy

Having presented two WKB approximations and one matched asymptotic expansion
for the problem at hand, attention is now turned to the method of multiple scales. In
previous work by Majdalani (2001), the modified variable was left unspecified while
carrying out the two-scale expansion. At the conclusion of the asymptotic analysis,
physical arguments were called upon in evaluating the conceptual coordinate. These
physical arguments were based on comparisons with an available WKB solution.
The strategy here is different in that it precludes provisional comparisons with
supplementary expansions. At present, the UST will be connected to the problem’s
solvability condition. The latter will be based on the principle of least singular
behaviour (Van Dyke 1975).

5.2. A generalized two-scale expansion

To begin, we let our two fictitious coordinates be y0 = y, and y1 = δs(y). The
difference here is that s(y) will remain unspecified until the solvability condition is
applied. Forthwith, functions and derivatives are expanded into

Yn(y0, y1) = Y (0)(y0, y1)+δY (1)(y0, y1)+O(δ2),
d

dy
=

∂

∂y0

+δ
ds

dy0

∂

∂y1

,
d2

dy2
=

∂2

∂y2
0

+O(δ).

(5.1)
When inserted into (2.7), these expressions give rise to a sequence of partial differential
equations (PDEs) at different orders in δ. For the leading and first orders, one identifies

∂Y (0)

∂y0

−
[
2 (n + 1)

F ′

F
+ i

S

F

]
Y (0) = 0, Y (0)(0) = 1, Y ′(0)(1) = 0, (5.2)

∂Y (1)

∂y0

−
[
2 (n + 1)

F ′

F
+ i

S

F

]
Y (1) = − ds

dy0

∂Y (0)

∂y1

+
1

F

∂2Y (0)

∂y2
0

. (5.3)

Then, integration of (5.2) gives

Y (0)(y0, y1) = K1(y1) exp

{
2 (n + 1) ln [F (y0)/F0] + iS

∫ y0

0

F −1(z) dz

}
, (5.4)

where K1 awaits evaluation from the first-order equation. This multiplier can be
determined in a manner to promote the least singular behaviour in Yn. To that end,
we find it unnecessary to determine Y (1) fully. Rather, it is sufficient to introduce
a solvability condition for which an asymptotic series expansion of the form Y (0) +
δY (1) + O(δ) may be realized. This is accomplished by first introducing

Λ =
Y (1)(y0, y1)

Y (0)(y0, y1)
. (5.5)
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In order to determine Λ, one can multiply (5.2) by Y (1)[Y (0)]−2 and subtract the result
from the product of (5.3) and [Y (0)]−1. This operation yields

1

Y (0)

∂Y (1)

∂y0

− Y (1)

[Y (0)]2
∂Y (0)

∂y0

= − s ′

Y (0)

∂Y (0)

∂y1

+
1

FY (0)

∂2Y (0)

∂y2
0

. (5.6)

Noting that the left-hand side is the partial derivative of Λ with respect to y0, (5.6)
can be integrated into

Λ =
Y (1)

Y (0)
=

∫ y0
[

− s ′

Y (0)

∂Y (0)

∂y1

+
1

FY (0)

∂2Y (0)

∂y2
0

]
dz. (5.7)

At this point, (5.4) can be differentiated and substituted into (5.7); one finds

Λ = −s(y0)

K1

dK1

dy1

+

∫ y0 {
−S2F −3 + 2 (n + 1) [F ′′F −2 + (2n + 1)F ′2F −3]

+ iS(4n + 3)F ′F −3
}

dz = −s(y0)

K1

dK1

dy1

−S2 ×
∫ y0

[F −3 − iS−1(4n + 3)F ′F −3 + O(S−2)] dz. (5.8)

5.3. The problem’s solvability condition

In order to promote a uniformly valid series, the ratio of Y (1) and Y (0) must be
bounded ∀y1. This can be accomplished by posing Λ = O(1). Equation (5.8) becomes

Λ = −s(y0)

K1

dK1

dy1

− S2

∫ y0 [
F −3 + iS−1

(
2n + 3

2

)
(F −2)′ + O(S−2)

]
dz = O(1). (5.9)

For arbitrary F , Λ will be bounded if and only if

1

K1(y1)

dK1(y1)

dy1

= κ(y1) = O(1) or

K1(y1) = K0 exp

(∫
κ dy1

)
= K0 exp

(
δ

∫
κ ds

)
. (5.10)

On the one hand, K0 emerges as a constant that can be determined from Y (0)(0) = 1.
On the other hand, κ appears as an auxiliary function that is self-cancelling. Moreover,
when (5.10) is substituted back into (5.9), s(y0) may be deduced. The result is

s(y0) = −κ−1S2

{∫ y0 [
F −3 + iS−1

(
2n + 3

2

)
(F −2)′]dz + S−2Λ

}
. (5.11)

Subsequently, since Λ = O(1), one can put

∂s/∂y0 = −κ−1S2
{[

F −3 + iS−1
(
2n + 3

2

)
(F −2)′]+ O(S−2)

}
, (5.12)

so that, by virtue of (5.1),

ds =
(
∂s/∂y0 + δs ′∂s/∂y1

)
dy

=
(
−κ−1S2

{[
F −3 + iS−1

(
2n + 3

2

)
(F −2)′]+ O(S−2)

}
+ O(δ)

)
dy. (5.13)

This can be substituted into (5.10) to get

K1(y1) = K0 exp

[
δ

∫ (
−S2

{[
F −3 + iS−1

(
2n + 3

2

)
(F −2)′]+ O(S−2)

}
+ O(δ)

)
dy

]
.

(5.14)
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From (5.11), it becomes clear that the problem exhibits an underlying multiple-scales
structure that cannot be captured by linear transformations. As such, it justifies the
analyses in which the use of nonlinear coordinates is suggested (Majdalani 1998, 2001).
In fact, the use of a nonlinear scaling transformation is first reported by Van Dyke
(1975) in his account of Munson’s treatment of the vortical layer over an inclined cone
(Munson 1964). Common to these problems is the coexistence of several mechanisms
involving dispersive and dissipative mechanisms. Under such circumstances, it is
possible for the transitional variables to be nonlinear functions of space. In problems
such as those described here, the freedom of a general transformation allows us to
capture the nonlinear behaviour.

5.4. A generalized coordinate

Recalling that the type I distinguished limit is δ ∼ S−2, a solution may be arrived at by
substituting (5.14) back into (5.4). Using the superscript G to denote a multiple-scales
solution based on a generalized coordinate, the multiple-scales result reduces to

Y G
n = (F/F0)

2n+2 exp

{
−ξ

∫ y

0

F −3 dz

+ i

[
S

∫ y

0

F −1 dz +
(
2n + 3

2

)
Sδ
(
F −2

0 − F −2
)]}

+ O(δ). (5.15)

This expression reproduces the dominant parts in Y W
n . Despite being of the same

order as (3.14), it is simpler to evaluate because it does not contain the higher order
integral seen in (4.3). Furthermore, it displays the coordinate transformation required
in a standard multiple-scales analysis. From (5.11), one realizes that

sG ∼
∫ y

0

F −3 dz + iS−1
(
2n + 3

2

)
F −2. (5.16)

Having determined Y G
n , the velocity of the travelling wave may be deduced from (2.1).

One obtains

uG
1 (x, y, t) = sin (ωmx) sin (ωmt) − (F/F0) sin (ωmxF/F0) exp ζG sin

(
ωmt + ΦG

)
,

(5.17)

where

ζG = −ξ

∫ y

0

F −3(z) dz, ΦG = −
[
S

∫ y

0

F −1(z) dz + 3
2
Sδ
(
F −2

0 − F −2
)]

. (5.18)

6. Discussion
6.1. Error verification

In order to verify the truncation order associated with each approximation, the
maximum error evolving from Y G

n , Y W
n and Y K

n can be determined from

EA
n (n, S, δ) = max

0�y�1

∣∣Y N
n (y, n, S, δ) − Y A

n (y, n, S, δ)
∣∣ , (6.1)

where Y N
n is the numerical solution of (2.2) and Y A

n is a given asymptotic solution
for A = {G, W, K}. Following the formal test proposed by Bosley (1996), one may
generate a log–log plot of EA

n versus δ at fixed S and n. Assuming that EA
n (n, S, δ) ∼ δκ ,

the order of the error κ is deducible from the graph. For the first two eigenvalues,
this procedure is illustrated in figure 4 where the error in each approximation is
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Figure 4. In descending level of precision, we present the errors evolving from the uniformly
valid expansions of (a) YK , (b) YW and (c) YG. The test function corresponds to F = cos( 1

2
πy)

and n = 0, 1.

displayed versus δ/S at constant S. This is done in the interest of clarity because
error curves become too closely spaced when plotted versus δ. In all cases, the error
is seen to exhibit a clear asymptotic character. Specifically, one notes that κ → 1
as δ → 0, in compliance with a leading-order expansion. Overall, Y K

n displays the
smallest absolute error ∀S, δ and n = 0, 1. This can be attributed, in part, to the
ability of Y K

n to outperform other asymptotic solutions at both ends of the domain.
On the other hand, both Y G

n and Y K
n exhibit regions of accelerated convergence in

which the error increases to order 2 in some range of the operating parameters. At
higher eigenvalues, the error gradually diminishes for S � 10 except in Y K

n . In fact,
EK

n in figure 4(a) constitutes the only case for which the error increases with n, ∀S.
It is interesting to note that all errors diminish and merge as the Strouhal number is
reduced. They converge to the same value at S = 0.1.

6.2. Characteristic length scales

In a previous investigation of the oscillatory porous channel flow, the UST
approximation was used wherein the space-reductive variable was left unspecified
during the derivation. At the conclusion of the effort, the undetermined variable was
deduced by matching the leading UST term with that of the WKB. This rationalization
was based on the physical argument that exponential damping of the oscillatory wave
ought to occur at the same rate irrespective of the technique used. In essence, it
conformed to Prandtl’s principle of matching by supplementary expansions. As a
windfall, a general form for the length scale ηU could be arrived at. This relationship
produced ηU explicitly for an arbitrary mean-flow function F . For example, one could
write

ηU = F 3

∫ y

0

F −3 dz

=

{
1

108
r(r2 − 3)

[
18 − 27r2 + 6r4 + 2r2(r2 − 3)2 ln(3r−2 − 1)

]
, small R

1
π
cos3

(
1
2
πy
) [

ln tan 1
4
π (1 + y) + sec

(
1
2
πy
)
tan
(

1
2
πy
)]

, large R
. (6.2)
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This result could be directly used to explain and guide the selection of inner variables
in similar studies of oscillatory flows in porous channels. On the downside, it required
matching with an available solution.

The shortcoming of the UST paradigm is eliminated in the GST approximation.
At present, neither guesswork nor rationalization is required. In fact, specification of
the scale in (5.11) is independently realized by imposing the principle of minimum
singularity. From (5.11), the need for a nonlinear variable transformation is formally
established. Based on (5.16), the problem’s scaling functional can be determined from

ηG =
F 3
∫ y

0
F −3dz + iS−1

(
2n + 3

2

)
F

1 − iS−1(4n + 3)F ′ . (6.3)

It may be instructive to note that ηU can be restored from ηG since ηG → ηU as S → ∞
at constant n. Thus ηU represents the leading-order, parameter-free component of ηG.
This also explains the ability of the UST expansion to yield a rational approximation.

6.3. A simple test case

The usefulness of (5.16) may be illustrated by considering F = α(1 − y); α > 0.
Accordingly,

δ
d2Yn

dy2
− α(1 − y)

dYn

dy
+ [iS − 2 (n + 1) α] Yn = 0. (6.4)

Apart from the benefit of obtaining a multiple-scales solution directly from (5.15) or
(5.17), the use of (5.16) enables us to identify the type of transformation needed in a
standard two-variable expansion. As shown by Majdalani (1999), the corresponding
equation (6.4) cannot be solved asymptotically using linear transformations. One
may verify the futility of using y0 = y and any linear distortion of the form y1 =
(1 − y)

√
α/(2δ), y

√
α/(2δ), δ−λ(1 − y), δ−λy, ∀λ. Instead, one must resort to (5.16) and

determine that the second coordinate transformation must follow

sG ∼
∫ y

0

α−3(1 − z)−3 dz + O(S−1) = 1
2
α−3
[
(1 − y)−2 − 1

]
+ O(S−1). (6.5)

Considering that constants do not affect the scaling order, the nonlinear coordinate
sG = 1

2
α−3(1 − y)−2 is realized. Subsequently, it can be shown that a conventional

application of multiple-scales analysis with y0 = y and y1 = δsG = 1
2
α−3δ(1 − y)−2

yields a uniformly valid solution that is identical to the GST result. The use of (5.16)
or (6.3) can be especially helpful in treating more elaborate forms of F . At this point,
it may be instructive to note that an extended form of the GST approach may be
potentially employed such that the strained coordinate, y1, is granted more freedom
through the WKB-like expansion

y1 = β−1s0 + s1 + βs2 + β2s3 + β3s4 + · · · =

∞∑
k=0

βk−1sk. (6.6)

The resulting work will reproduce, after considerable effort, the WKB approximations
obtained in § 3. The detail of such analysis will be the topic of a future investigation.

6.4. Behaviour and confirmation

Based on Bosley’s test, one may also examine the maximum error Em between uA
1

given asymptotically and uN
1 obtained numerically. Using

EA
m = max

0 �x �l
0 �y �1

∣∣uN
1 − uA

1

∣∣ , EA
m ∼ δκ , (6.7)
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Figure 5. Modulus of the time-dependent velocity u1(x, y, t) for the first three oscillation
modes. Results are shown at equal intervals along the channel. Here F = cos( 1

2
πy), R = 4×104

and S = 25m; m = 1, 2, 3.

the order of the error may be calculated. Comparisons between EG
m , EW

m and EU
m

yield κ → 1 consistently as δ → 0 at fixed S. According to Bosley (1996), the
resulting asymptotic behaviour confirms that the solutions are legitimate, error-free
approximations. Overall, we find that the smallest error evolves from EK

m and is
followed by EW

m and EG
m . Since EA

m diminishes as S is reduced, these approximations
remain unconditionally valid as the Strouhal number is lowered at constant δ.

The behaviour of uK
1 (or uN

1 ) is illustrated in figure 5 at constant R = 4 × 104, F =
cos( 1

2
πy) and a typical Strouhal number of S = 25m. The relatively large value of

the Strouhal number may be attributed to our reference velocity being based on the
wall injection speed vw , which is a small quantity when compared to the mainstream
velocity used in classical acoustics. The precision at this Reynolds number causes the
numerical and asymptotic solutions to become indiscernible for the given graphical
resolution. As the oscillation mode number is increased, the modulus of uK

1 is seen
to follow the spatial mode shape of the irrotational plane wave represented by the
first member of (2.1). For the fundamental oscillation mode (S = 25), the modulus
reaches its maximum halfway along the channel where the sinusoidal plane wave
amplitude is largest. The penetration depth of the wave continues to increase in the
downstream direction due to the convection of unsteady vorticity that accompanies
the mean-flow for F = cos( 1

2
πy). For the first harmonic (S = 50), a sinusoidal velocity

node appears at x = 1
2
l; this local deficit in the parallel flow component eliminates

the local coupling between acoustic and rotational waves. Nonetheless, the rotational
wave amplitude remains non-zero above the wall due to the downstream convection
of unsteady vorticity.

The spatial evolution of the unsteady vorticity is captured in figure 6 for the first
three harmonic oscillation modes, m = 2, 3 and 4. This is effectuated by displaying
equally distributed isovorticity contours, starting with the maximum absolute values
that originate at the channel wall. Using ±100 % to denote the vorticity extrema that
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Figure 6. Isocontours of time-dependent vorticity for the first three harmonic oscillation
modes and one instant of time. Full and broken lines denote alternating signs of vorticity that
will trade back and forth with the passage of time. Here F = cos( 1

2
πy), R = 4 × 104 and

S = 25m; m = 2, 3, 4.

occur at the acoustic velocity antinodes, where x/l = (2n − 1)/2m; 0 < n � m; n ∈
� , contours of constant vorticity are shown in decrements of 20 %. Their thumbprints
illustrate the downstream convection and depreciation of unsteady vorticity due to
the combined effects of mean-flow motion, acoustic driving at the wall, and viscous
damping. They are shown in figure 6 for typical values of the control parameters.
Given the alternating directions of particle rotation at different oscillation modes,
some interesting features may be observed including the emergence of (m − 1) lines
of zero unsteady vorticity. These ‘irrotational’ streaklines originate at the acoustic
velocity nodes where surface coupling is absent. Thus, starting at x/l = n/m; n < m,
these demarcation lines partition the channel into m regions of counter-rotating
vorticity. In the interest of clarity, we switch from full lines to broken lines as
unsteady vorticity switches direction.

The effect of decreasing the wall injection velocity is examined in figure 7 where
the wave modulus is displayed for the first oscillation mode shape. By fixing the
wave frequency and fluid viscosity, reducing the injection velocity by one order of
magnitude is seen to shorten the spatial wavelength in the wall-normal direction. The
penetration depth is also reduced. These trends are typical of those reported in the
literature.

In figure 8, the axially travelling wave u1 is compared to the numerical solution for
the first fundamental oscillation mode, F = cos( 1

2
πy), and x = 1

2
l (midway along the

channel). Interestingly, by holding ξ = 5, the Strouhal number may be varied over a
wide range of frequencies without affecting the thickness of the rotational region. It is
clear that the agreement between numerics and asymptotics improves with successive
increases in the Strouhal number despite the highly oscillatory nature of the solution
and the marked reduction in spatial wavelength. The observed agreement reflects the
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Figure 7. Modulus of the time-dependent velocity u1(x, y, t) for the first oscillation mode
assuming constant frequency and viscosity. By holding ε = ν/(ωh2) = 10−6, the wall injection
velocity is reduced, from top to bottom, by one order of magnitude. Here F = cos( 1

2
πy).

precision entailed in the perturbative approximations and their usefulness in disclosing
keystone parameters such as ξ. This parameter plays a significant role in controlling
the wave’s depth of penetration and could not have been identified except through
the proper use of asymptotics (Majdalani 1995).

7. Conclusions
The search for a multiple-scales solution of the oscillatory channel flow problem

was initiated in 1998 due to its relevance to instability analysis. The failure of linear
coordinate transformations prompted the quest for a nonlinear composite scale.
By devising a space-reductive transformation in the form of a composite variable,
one could reproduce the modified scales in their regions of validity. This required
conjecture and careful identification of the transitional variables before constructing
a composite scale. By implementing a two-variable expansion that made use of this
composite scale, a uniformly valid approximation was obtained. Later, Majdalani
(2001) attempted a reverse methodology. This time, the coordinate transformation
was kept unspecified during the expansion. In the process, the leading-order term
based on the undetermined functional was compared to a WKB solution of type I.
Then, matching leading-order terms yielded the undetermined transformation. The
resulting UST approximation served four objectives: (a) it confirmed the nonlinearity
of the scales; (b) it provided a more formal alternative that is separately arrived at;
(c) it reduced the amount of guesswork and subjectivity involved in the selection
of inner scales and (d ) it illustrated Prandtl’s principle that proposes matching with
supplementary expansions. However, by relying on the existence of a supplementary
approximation, the UST expansion became limited to problems for which a procedural
substitution could be entertained. This issue is circumvented in the present study where
the transformation is obtained directly from the problem’s solvability condition and
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Figure 8. Analytical GST (full lines) and numerical (broken) solutions of the axially travelling
wave for F = cos( 1

2
πy), ξ = 5, m = 1, ωmt = π/2, x/ l = 0.5, and a Strouhal number of

(a) S = 50, (b) 100, (c) 200 and (d) 400. By fixing ξ, the penetration depth of the travelling
wave remains constant at any axial location regardless of the wall injection velocity, viscosity,
or frequency of oscillations. The agreement between numerics and asymptotics continues to
improve with successive increases in the Strouhal number despite the highly oscillatory nature
of the solution and the radical reduction in spatial wavelength.

the principle of minimum singularity. By ensuring boundedness between successive
perturbation orders, an improved expression is derived from which the UST form is
restored at leading order.

Apart from being independently formulated, the GST approximation exhibits four
interesting features: (a) it is compact and straightforward to express in closed form;
(b) it clearly displays the physical characteristics that control the solution; (c) it
unravels the necessary coordinate transformation without resorting to guesswork or
supplementary functions and (d ) it stems from the problem’s mathematical stipulation
for least singular behaviour. Furthermore, the GST approximation follows the
fundamental procedural step of multiple-scales theory, namely, that of transforming
the governing ODE into pairs of PDEs. Its uniqueness stands in (i) retaining a
nonspecific scale until the basic solution is obtained; (ii) applying a fundamental
principle to ensure boundedness between successive expansion terms and (iii)
disclosing the key transformation at the conclusion of the analysis. It may be useful
to add the GST’s ability to provide the unique scales that, when used in a standard
multiple-scales expansion, produce a result similar to that of the WKB of type I.

Particular to this investigation, two essential forms of the WKB solution are derived
and presented to arbitrary order. The new type II solution is especially useful in
being unconditionally valid at all orders. However, the increased algebraic complexity
that accompanies type II can, in some applications, require numerical evaluation.
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The type I solution is simpler but requires a small-amplitude correction in higher
order representations. Incidentally, the appearance of a near-core boundary layer is
consistent with conventional theory of laminar injection-driven flows.

By way of verification, several examples are offered through which the newly
developed asymptotic expansions are extensively tested. Having established the
accuracy of the individual eigensolutions in the wall-normal direction, the complete
expression for the axially travelling wave is deduced, characterized and compared to
its numerical solution.

This project was funded by the National Science Foundation through grant No.
CMMI-0353518, Dr Eduardo A. Misawa, Program Director. I am thankful for
the constructive reports received from the anonymous referees and for the timely
assistance of Joshua W. Batterson in addressing the final round of review comments.
I also wish to acknowledge a valuable technical exchange with Professor Sjoerd W.
Rienstra concerning the nature of the GST.

Appendix A. Vortico-acoustic wave equation in a porous channel
The Helmholtz vector decomposition theorem enables us to synthesize the time-

dependent disturbances in a porous channel from two parts: a curl-free, irrotational
vector and a divergence-free, vortical component. Using the circumflex and tilde to
denote either acoustic or solenoidal fields, the travelling wave in a channel may be
written as u1 = û + ũ. This subdivision of roles may be substituted into the linearized
Navier–Stokes equations at the first order in the perturbed pressure wave amplitude.
Forthwith, two sets of responses may be extracted for the acoustic and rotational
motions. On the one hand, the irrotational set collapses into

∂2p̂/∂t2 − ∇2p̂ = O(Mw); Mw ≡ vw/as, (A 1)

or

p̂ (x, t) = cos (ωmx) exp (−iωmt) + O(Mw), (A 2)

û (x, t) = i sin (ωmx) exp (−iωmt) + O(Mw), (A 3)

where p̂ is the acoustic pressure and ωm = ωh/as = mπ/l is the dimensionless
wavenumber assuming rigid wall boundary conditions and axial oscillations in a
channel with l � 1. On the other hand, the rotational response yields

∇ · ũ = 0, (A 4)

∂ ũ/∂t = −Mw [∇ (ũ · u0) − ũ × ∇ × u0 − u0 × ∇ × ũ] − R̄−1∇ × ∇ × ũ; R̄ ≡ ash/ν.

(A 5)

Being interested in longitudinal wave motions, the no-slip condition may be invoked
to impose a vanishing velocity parallel to the porous wall. Furthermore, assuming
symmetry about the midsection plane, one can put

u1(x, 0) = û(x, 0) + ũ(x, 0) = 0, (A 6)

∂u1(x, 1)/∂y = 0. (A 7)

Letting ũ(x, y, t) = ū(x, y) exp (−iωmt), (A 4)–(A 5) may be expressed as

∇ · ū = 0, (A 8)

iū = σ [∇ (ū · u0) − ū × ∇ × u0 − u0 × ∇ × ū] + ε∇ × ∇ × ū. (A 9)
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Subsequently, with v̄/ū = O(Mw), the axial component of (A9) reduces to

iū = σ

[
∂

∂x
(ūu0) + v0

∂ū

∂y

]
− ε

∂2ū

∂y2
+ O(Mw). (A 10)

At the porous wall, the dynamic coupling with the acoustic wave requires setting
ū(x, 0) = −i sin (ωmx). Then taking Berman’s similarity form (u0, v0) = (−xF ′, F ) for
the mean-flow and ū(x, y) =

∑
cnx

λnYn(y) as a linear solution to (A 10), one finds
λn = 2n + 1, n ∈. The rotational wave contribution becomes

ũ(x, y) = −i

∞∑
n=0

(−1)n (ωmx)2n+1

(2n + 1)!
Yn(y) exp (−iωmt) , (A 11)

where each Yn is left to be determined from

ε
d2Yn

dy2
− σF

dYn

dy
+
[
i + 2σ (n + 1) F ′]Yn = 0, 0 � y � 1, (A 12)

with

Yn (0) = 1 (no-slip at thewall), and Y ′
n(1) = 0 (core symmetry). (A 13)

This completes our cursory derivation of (2.1) and (2.2).

Appendix B. Exact Kummer solution
Using F = α(1 − y) and α = (3

2
, 1

2
π), (2.7) becomes

δ
d2Yn

dy2
− α(1 − y)

dYn

dy
+ [iS − 2 (n + 1) α] Yn = 0. (B 1)

At this point, a double transformation of the type

χ = (1 − y)
√

α/δ, Yn = exp(− 1
4
χ2)f (χ), (B 2)

leads to

fχχ +
(
p + 1

2
− 1

4
χ2
)
f = 0, p = −2n − 3 + iα−1S. (B 3)

The general solution is a linear sum of parabolic cylinder functions, namely,

Yn(χ) = exp
(
− 1

4
χ2
) [

c1Dp(χ) + c2Dp(−χ)
]
. (B 4)

Due to �(p) < 0, application of the symmetry condition at the core yields c1 = c2.
Hence, one can put

Yn(χ) = C1 exp(− 1
2
χ2)Φ

[
n + 3

2
− 1

2
iα−1S, 1

2
, 1

2
χ2
]
, (B 5)

where Φ denotes a Kummer function. The remaining constant may be determined
by applying the condition at the outer wall. One finds C1 = exp(1

2
αδ−1)Φ−1(n + 3

2
−

1
2
iα−1S, 1

2
, 1

2
αδ−1). It follows that

Y E
n = exp

[
1
2
αδ−1y (2 − y)

] Φ
[
n + 3

2
− 1

2
iα−1S, 1

2
, 1

2
αδ−1(1 − y)2

]
Φ
(
n + 3

2
− 1

2
iα−1S, 1

2
, 1

2
αδ−1

) . (B 6)
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